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We formulate a theory of agent-based models in which agents compete to be in a winning group. The agents
may be part of a network or not, and the winning group may be a minority group or not. An important feature
of the present formalism is its focus on the dynamical pattern of strategy rankings, and its careful treatment of
the strategy ties which arise during the system’s temporal evolution. We apply it to the minority game with
connected populations. Expressions for the mean success rate among the agents and for the mean success rate
for agents withk neighbors are derived. We also use the theory to estimate the value of connectivityp above
which the binary-agent-resource system with high resource levels makes the transition into the high-
connectivity state.
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I. INTRODUCTION

Agent-based models form an important part of research
on complex adaptive systems[1]. For example, the self-
organization of an evolving population consisting of agents
competing for a limited resource has potential applications in
areas such as economics, biology, engineering, and social
sciences[1,2]. The bar-attendance problem proposed by
Arthur [3,4] constitutes a typical setting for such a system in
which a population of agents decide whether to go to a popu-
lar bar having limited seating capacity. The agents are in-
formed of the attendance in past weeks, and hence the agents
share common information, interact through their actions,
and learn from past experience. The problem can be simpli-
fied by considering binary games, either in the form of the
minority game(MG) [5,6] or in the more general form of a
binary-agent-resource(BAR) game [7,8]. For modest re-
source levels in which there are more losers than winners,
the minority game proposed by Challet and Zhang[5,9] rep-
resents a simple, yet nontrivial, model that captures many of
the essential features of such a competing population.

The MG considers an odd numberN of agents. At each
time step, the agents independently decide between two op-
tions 0 and 1. The winners are those who choose the minority
option. The agents learn from past experience by evaluating
the performance of their strategies, where each strategy maps
the available global information(i.e., the record of the most
recentm winning options) to an action. One important quan-
tity in the MG is the standard deviations of the number of
agents making a particular choice. This quantity reflects the
performance of the population as a whole in that a smalls
implies on average more winners per turn, and hence a
higher success rate per turn per agent. In the MG,s exhibits
a nonmonotonic dependence on the memory sizem of the
agents[10–12]. Whenm is small, there is significant overlap
between the agents’ strategies. This crowd effect[7,13,14]
leads to a larges, implying the number of losers is high.
This is the crowded, or informationally efficient, phase of the
MG. In the informationally inefficient phase wherem is
large, s is moderately small and the agents perform better
than if they were to decide their actions randomly.

Theoretical analysis of the MG has been the focus of
many studies[4,7,11–20]. Mapping the MG into the lan-
guage of disordered spin systems makes the machinery in
statistical physics of disordered system, most noticeably the
replica trick, useful in the study of models of a competing
population. For the MG, calculations based on the replica
method work well for the case of a large strategy pool, i.e.,
when the strategy pool is much larger than the strategies
actually being used in making decisions. This is referred to
as the informationally inefficient phase because information
is left in the resulting bit-string patterns for a single realiza-
tion of the game. In the informationally efficient phase, the
whole pool of strategies tends to be in play during the game.
The crowd-anticrowd theory gives a physically transparent
quantitative theory of the observed features in this regime, as
well as in the inefficient regime. The crowd-anticrowd theory
is based on the fact that it is the difference in the numbers of
agents playing a strategyR and the corresponding anticorre-

lated strategyR̄ that plays the most important role in the
understanding of the fluctuations and hence performance of
the whole population.

The crowd-anticrowd theory is a microscopic approach in
the sense that it follows the strategy play of the agents in the
population. While this leads to microscopically correct equa-
tions, in practice these equations are evaluated by simply
time averaging over the path taken by the strategy rankings.
A naive time averaging over all histories becomes more dif-
ficult to implement as the number of ties in strategy scores
increases, since such ties affect the number of agents playing
a given ranking of strategy and hence must be incorporated
explicitly in the time average. The effect of strategy ties be-
comes increasingly important asm decreases, i.e., size of
strategy space decreases, since the chance of ties arising will
then increase. In the efficient phase at very lowm, therefore,
there are frequent ties in the strategy performance[4,21], and
hence the time averagings within the crowd-anticrowd theory
require special care. In the present paper, we present a
complementary theoretical treatment for this regime in order
to explicitly account for such strategy ties. The resulting
theory amounts to a nontrivial reorganization of the time
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averagings within the crowd-anticrowd theory. Like the
original crowd-anticrowd theory, it is applicable to both non-
networked and networked populations[21,22]. The theory
we present is based on the idea of following the patterns of
the ranking of strategies as the game evolves in time, without
knowing the details of the ranking of each strategy. The ef-
fects of tied strategies are taken into account by considering
the number of strategies belonging to each rank as the game
evolves. To illustrate the applications of the theory, we show
that the theory explains the features observed in numerical
results of a networked version of MG. The theory also allows
the evaluation of the success rate of agents with a given
number of connected neighbors. The latter is important in the
study of the functionality of an underlying network[23] in a
competing population. Since analytic techniques such as the
replica trick fail in the efficient phase of the MG, we focus
the applications of our theory specifically on this regime. The
present theory thus provides a framework for analytic treat-
ment of nontrivial collective dynamics in agent-based mod-
els of competing populations.

The plan of the paper is as follows. In Sec. II, we define
the MG in non-networked and networked populations. In
Sec. III, we discuss the different ranking patterns based on
performance of the strategies as the game evolves, and the
fraction of strategies in each rank. The number of agents
using a strategy belonging to a particular rank is derived for
both non-networked and networked MG in Sec. IV. In Sec.
V, we apply the theory to derive an expression for the mean
success rate in the efficient phase as a function of the con-
nectivity in the population and compare results with those
obtained by numerical simulations. An alternative way to
study the mean success rate is to decompose the population
into agents with different numbers of connected neighbors.
An expression for the mean success rate of agents withk
connected neighbors is derived in Sec. VI. Results are in
agreement with numerical simulations. Section VII gives a
discussion on the limit of validity of the theory and shows
how the theory can be extended to study BAR models at high
connectivity.

II. THE MINORITY GAME

The basic MG[5] comprises ofN agents competing to be
in a minority group at each time step. The only information
available to the agents is the history. The history is a bit
string of lengthm recording the minority option for the most
recentm time steps. There are a total of 2m possible history
bit strings. For example,m=2 has 22=4 possible global out-
come histories: 00, 01, 10, and 11. At the beginning of the
game, each agent pickss strategies, with repetition allowed.
They make their decisions based on their strategies. A strat-
egy is a look-up table with 2m entries giving the predictions
for all possible history bit strings. Since each entry can either
be 0 or 1, the full strategy pool contains 22m

strategies. Ad-
aptation is built in by allowing the agents to accumulate a
merit (virtual) point for each of hers strategies as the game
proceeds, with the initial merit points set to zero for all strat-
egies. Strategies that predicted the winning(losing) action at
a given time step, are assigned(deducted) one(virtual) point.

At each turn, the agent follows the prediction of her best-
scoring strategy. A random choice will be made for tied strat-
egies.

The networked minority game[21,22] explores thefunc-
tionality of an underlying network in the context of a popu-
lation competing for limited resource. At each time stept,
each agent(node) decides on one or two options, as in the
basic MG. Each agent decides in light of(i) global informa-
tion which takes the form of the history of them most recent
global outcomes as in the basic MG, and(ii ) local informa-
tion obtained via network connections. The connections here
need not be physical—it only matters that the connected
neighbors are those with whom an agent can communicate.
At each time step, each agent compares the score of its own
best-scoring strategy(or strategies) with the highest-scoring
strategy(or strategies) among the agents to whom he is con-
nected. The agent adopts the action of whichever strategy is
highest scoring overall, using a coin toss to break any ties.
The network can be a classical random network or take on
the geometry of a growing scale-free network[23]. For sim-
plicity, we here assume a random network, where the con-
nection between any two agents(i.e., nodes) exists with a
probability p. Numerical results[21] show that the presence
of connections lowers the global performance of the popula-
tion, while ensuring fairness by lowering the spread in the
success rates among the agents. Here, we aim at formulating
a theory that can be applied to explain the features observed
in the numerical simulations. Since the effect of such con-
nections is typically to increase the chances of strategy ties,
particularly at lowm, this motivates the present theory’s ap-
proach of tracking strategy patterns in time.

III. RANKING THE STRATEGIES

The two key ingredients for the present theory are(i) the
patterns of strategy rankings according to performance,
based on the strategies’ virtual points as the game proceeds;
and(ii ) the fraction of strategies in each rank for each rank-
ing pattern. In the following two subsections, we discuss
these two points. The discussion is valid for populations ei-
ther with or without connections.

A. Ranking pattern

As a particular run of a given game evolves, the pattern of
strategy rankings also evolves. The instantaneous strategy
ranking depends on the number of history bit strings that
have occurred anoddnumber of times and the next outcome
will depend on whether the current history bit string has
occurred an odd or even number of times. Both of these
factors are important in the calculation of the mean success
rate of the population.

Suppose we are at a given moment in the run of a game.
Let m be the current history bit string that the agents are
using for decisions. Lethtodd

n j be the set of turns(i.e., time
steps) so far in which a historyn has occurred an odd num-
ber of times(including the initial history bit string that starts
the game) and hteven

n j be the set of turns so far in which a
history n has occurred an even number of times[24]. For
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small values ofm, i.e., in the efficient phase of the MG, the
outcome time series exhibits the feature of antipersistence or
double periodicity[10–12,25,26]. This feature implies that
all history bit strings occur with equal probabilities. It means
that for a current historym based on which the agents decide,
if the winning side ish (h can be 0 or 1) whentP hteven

m j, the
outcome is 1−h with probability unity in the next occur-
rence ofm. It follows that no strategies could perform better
than the others in an average over time, and the virtual points
(VPs) of the strategies cannot show a runaway behavior, i.e.,
the VPs of strategies will not keep on increasing or decreas-
ing. This property is intimately related to the fact that the
Eulerian trail is an underlying quasiattractor of the game in
this efficient regime[26]. By focusing on whether a history
has occurred an odd or even number of times during a run,
we are picking out what is essentially the most important
aspect of the outcome series.

For a particular turnt, we define the ranking of the strat-
egies according to their performance up to that point in time
based on the VPs of the strategies. The rank-1 strategy or
strategies have the highest VPs. The rank-2 strategies are the
second best-performing(having the second highest VPs), and
so on. For smallm (efficient phase), the ranking pattern of
the strategies depends onthe number of historiesthat have
occurred an odd number of times. It is illustrative to consider
an example for the case ofm=2 where there are four pos-
sible histories(00), (01), (10), and(11). At t=0, all strategies
are assigned the same VP. There is only one rank, called rank
1, of the strategies, with all the strategies belonging to this
rank. This is also the case when the system returns to a
situation equivalent tot=0 after visiting every possible path
from one history to another an equal number of times. Att
=1, let 00 be the corresponding history(without loss of gen-
erality, the random seed history is taken to be 00). The agents
decide in a random fashion as the history has not occurred
before (or has occurred an even number of times before).
The outcome would be 1(or 0) with probability 1/2. Let the
outcome be 1, for example. The history bit string will be-
come 001. Prior to the currentm=2 bit string of 01, one
history bit string(namely, 00) occurred once. The strategies
are now divided into 2 ranks with rank 1 including strategies
that predict 1 for history 00; and rank 2 including strategies
that predict 0 for history 00. The strategy VP pattern thus
consists of two ranks corresponding to assigning +1 VP for
those strategies in rank 1 and −1 for those in rank 2.

If the outcome is also 1 att=2, the strategies that predict
1 for the history 01 will have a higher VP. Note that the
history bit string is now 0011. Prior to the current bit string
of 11, two m=2 bit strings 00 and 01 occurred once. The
strategies will then be divided into three ranks after this time
step with rank 1 including strategies that predict 1 for both
histories 00 and 01; rank 2 including strategies that predict 1
for one of the two histories 00 and 01; and rank 3 including
strategies that predict 0 for both histories 00 and 01. The
strategy VP pattern thus consists of three ranks correspond-
ing to a VP of +2 for those strategies in rank 1, 0 for those in
rank 2, and −2 for those in rank 3.

If at some timet, the history 01 happens again, i.e., the
history occurred an odd number of times prior to the one
under consideration, the outcome will be 0 due to the crowd

effect as the outcome was 1 in the last occurrence of the
history. The rank-1 strategies will lose and the rank-3 strat-
egies will win. As a result, the ranking of the strategies is
then reduced to two ranks with rank 1 including strategies
that predict 1 for history 00; and rank 2 including strategies
that predict 0 for history 00.

It is important to note that for a givenm in the efficient
phase, there are only afinite number of patternsfor the rank-
ing of the strategy performance. In general, we have the fol-
lowing result for the strategy performance ranking pattern.

If a number ofk histories occurred an odd number of
times, the strategies will be divided intok+1 ranks. The
ranking is as follows: rank 1 including strategies that pre-
dicted the correct outcome for allk histories concerned; rank
2 including strategies that predicted the correct outcome for
k−1 histories concerned;̄ ; rank l including strategies that
predicted the correct outcomes fork− l +1 histories con-
cerned;̄ ; rank k+1 including strategies that predicted the
correct outcome for 0 histories concerned.

For a given value ofm, 0økø2m as there are 2m pos-
sible histories. In the efficient phase, while the numbers of
occurrence for every history are the same when averaged
over a long time,k sk=0,1,2,… ,2md histories may occur
an odd number of times in each time step as the game
evolves. Therefore, the current strategy ranking pattern can
be characterized by the parameterk. For a time step corre-
sponding tok=0, i.e., all the histories had occurred an even
number of times, there is only one rank and all the strategies
lie in the same rank since they have tied VPs(zero VPs). In

other words, there is only one(i.e., C0
2m

=1) way to achieve a
ranking pattern that consists only of rank 1.

Next we deduce the probabilityPskd of havingk histories
occur an odd number of times, without invoking too many
known details of the dynamics. Assuming that each history
has probability 1/2 to appear as one that has occurred an odd
number of times, then out of a total of 2m history bit strings,
the probabilityPskd of havingk histories occur an odd num-
ber of times is

Pskd = Ck
2mS1

2
D2m

= Ck
2m

/22m
. s1d

As the game evolves, the system maps out a path in the
history space[26]. As the game goes from one history to
another, it also makes transitions from one strategy perfor-
mance ranking pattern to another. Interestingly, the resulting
ranking pattern can be seen as a set of highly correlated,
time-dependent random walks where each walk reflects the
temporal dynamics of a given strategy’s VPs. The dynamical
evolution of this pattern is also of interest in its own right.
Note that there may be frequent ties in the strategies’ perfor-
mances. A merit of the present approach is that we take ex-
plicit account of possible ties in performance among the
strategies by grouping them into the same rank. This is im-
portant in the efficient phase where there are frequent tied
VPs among the strategies.

B. Fraction of strategies in each rank

The fraction of strategies in a particular rank for a given
value ofk can be calculated readily. It turns out that the ratio
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of the number of strategies in increasing ranks(recall rank 1
corresponds to highest VP) follows the numbers in the Pascal
triangle. When all the histories occurred an even number of
times, there is only one rank with a fraction unity of strate-
gies, i.e., all strategies, belonging to the rank. If only one
history sk=1d occurred an odd number of times, there are
two s=k+1d ranks with half(fraction 1/2) of the strategies in
rank 1 and the other half(fraction 1/2) in rank 2. The ratio of
the fractions of strategies in the two ranks is 1:1. If two
historiessk=2d occurred an odd number of times, there are
threes=k+1d ranks, with a fraction 1/4 of the strategies in
rank 1, 1/2 in rank 2, and 1/4 in rank 3. The ratio of the
fractions is1:2:1. Forthree histories occurring an odd num-
ber of times, there are four ranks with the ratio of fractions of
strategies in the ranks given by1:3:3:1, and so on. Fork
histories occurring an odd number of times, the fraction of
strategies in rank 1 isC0

k /2k, the fraction of strategies in rank
2 is C1

k /2k, and so on. In general, the fraction of strategies in
rank l is Cl−1

k /2k, where the denominator comes from
oi=1

k+1Ci−1
k =2k. The ratio of the fractions of strategies in dif-

ferent ranks is thus given byC0
k :C1

k : ¯ :Cl−1
k : ¯ :Ck

k, which
are the numbers in the Pascal triangle.

IV. NUMBER OF AGENTS USING A BEST STRATEGY
BELONGING TO RANK l

A. Nonconnected population

Consider the case of a nonconnected population, i.e., ba-
sic MG or p=0 in a networked MG. As an agent uses the
best-scoring strategy up to the moment of making a decision,
he will use the strategy with the lowest rank among thes
strategies that he was randomly assigned at the beginning of
the game.

Let k be the number of histories that occurred an odd
number of times. It is convenient for later discussion to in-
troduce the probability

a j
k ;

1

2k o
l=j+1

k+1

Cl−1
k =

1

2ko
l=j

k

Cl
k, s2d

that an agent holds a strategy with performanceworse than
rank j . For an agent using a rank-1 strategy to decide, he
must possess at least one rank-1 strategy. This happens with
a probability 1−sa1

kds, wheresa1
kds is the probability that the

agent holdss strategies that are all worse than rank 1.
Let Nl be the number of agents who hold a strategy in

rank l as their best strategy, for a givenk. In the basic MG,
this is also the number of agents who will use a strategy in
rank l to decide their action. For a population ofN agents, it
follows that for givenk

N1 = Nf1 − sa1
kdsg. s3d

Similarly, for an agent using a rank 2 strategy, he must hold
at least one rank 2 strategyand must not hold any rank 1
strategy. Therefore,

N2 = Nfsa1
kds − sa2

kdsg. s4d

In general the number of agents holding a rankl strategysl
=1,2,… ,kd as their best strategy is given by

Nl = Nfsal−1
k ds − sal

kdsg, s5d

with a0
k=1 as given by Eq.(2). For l =k+1,

Nk+1 = Nsak
kds. s6d

As an example, takes=2, N=101, and consider a mo-
ment in the game corresponding tok=4. Hence we havek
+1=5 ranks. The ratio of strategies in these ranks is
1:4:6:4:1. Theaverage number of agents using strategies in
each rank in these turns is given byN1=12.23,N2
=41.03,N3=37.88,N4=9.47, andN5=0.39. These numbers
change with time as the game evolves to time steps with
different values ofk. Knowing the number of agents using
each rank of strategies, it is then possible to evaluate analyti-
cally the average number of agents making a particular de-
cision and the mean success rate of the agents, as we shall
discuss in later sections.

B. Networked population

Let p be the probability that two randomly chosen agents
are connected. ForpÞ0, the agents may decide based on a
strategy that they do not hold. As a result, the number of
agents who actuallyusea strategy for decision in a particular
rank is, in general,not equal to the number of agentsNj who
hold a best-scoring strategy belonging to that rank[21]. The

number of agentsÑlspd who decide by using a rank-l strategy
can formally be expressed as a sum of two terms

Ñlspd = N̄l + o
j=l+1

k+1

DNjl , s7d

whereN̄l is the number of agents who hold a rank-l strategy
as their best-performing strategyandare not linked to agents
with a better(hence lower ranking) performing strategy, and
the second term represents all those using a rank-l strategy

due to the presence of links. Writingq=1−p, N̄l is then
given by

N̄l = Nlq
oi=1

l−1Ni , s8d

with Nl given by Eqs.(5) and (6). In Eq. (7), DNjl is the
number of agents who hold a rank-j strategy as their best
performing strategy, but they use a rank-l strategy for deci-
sion because they are linked to agents carrying such a strat-
egy. Note that j . l because an agent will use the best-
performing strategy among his own strategies and his
connected neighbors’ strategies in our networked MG model.
Now consider an agent who does not hold a strategy in rank
l but usesa rank-l strategy held by one of his neighbors. This
happens only when(i) he is not linked to any agent who
holds a strategy better than rankl (the probability is thus

qoi=1
l−1Ni) and (ii ) he is linked toat leastone agent who holds

a rank-l strategy[the probability iss1−qNld]. Hence we have

DNjl = Njsqoi=1
l−1Nids1 − qNld. s9d

Equation(7) for Ñspd, coupled withN̄l given by Eq.(8), DNjl

given by Eq.(9), andNj given by Eqs.(5) and(6), gives the
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number of agents who use a strategy in rankl for deciding
their action in a connected population.

V. APPLICATION: MEAN SUCCESS RATE

The mean success ratekwl (or mean wealth) of the agents
is the average number of winners per agent per turn. This
quantity reflects the global performance of the population as
a whole. This quantity is also closely related to the fluctua-
tions (or standard deviation) in the number of agents choos-
ing a particular option as the game proceeds. A smaller fluc-
tuation implies a higher mean success rate. Figure 1 shows
kwl as a function of connectivityp obtained by numerical
simulations form=1 andm=2 (symbols) in a population of
N=101 agents withs=2 strategies per agent. Asp increases,
kwl decreases, together with a drop in the spread of the suc-
cess rates among the agents[21]. Thus in the networked MG
model, while higher connectivity ensures fairness, the effi-
ciency also decreases. Qualitatively, the drop inkwl comes
about from the enhanced crowd effect asp increases. Here,
we derive an expression for the mean success rate as a func-
tion of connectivityp. Consider a time stept corresponding
to k histories having occurred an odd number of times.
Given this,t may belong tohteven

m j or htodd
m j for the particular

history bit stringm that the population is facing when mak-
ing a decision, since there are 2m−k histories which have
occurred an even number of times.

If tP htodd
m j, the mean number of agents choosing the last

winning option of the corresponding history is given by

Aoddskd = o
l=1

k+1

ÑlspdSk − l + 1

k
D . s10d

This is because the rank-l strategies must have made the
correct predictions fork− l +1 out of thek histories con-

cerned. Thus, the agents using a rank-l strategy have a prob-
ability sk− l +1d /k of choosing the previous winning option
for the historym based on which every agent decides. Due to
crowd effect, this is also the probability that the agents using
a rank-l strategy lose. Therefore, they will win with a prob-
ability 1−sk− l +1d /k=sl −1d /k. The mean success rate
woddskd for a givenk and tP htodd

m j is

woddskd = o
l=1

k+1S Ñlspd
N

DS l − 1

k
D . s11d

If tP hteven
m j, the agents decide randomly and the mean

number of agents choosing a particular option isN/2. In this
case, the probability of havingn agents choose a particular
option is

Pn = Cn
N/2N, s12d

as every agent has two options. For the MG, the winners are
those in the minority group. There aren winners forn, sN
−1d /2 andsN−nd winners fornù sN+1d /2. The mean suc-
cess rateweven for tP hteven

m j is then given by

weven= o
n=0

sN−1d/2

Pn
n

N
+ o

n=sN+1d/2

N

Pn
N − n

N
. s13d

We note that one may also make the crude approximation
that weven=1/2, without taking into account the fluctuations
in the number of agents making identical decisions.

Given a value ofk, i.e., there arek histories which have
occurred an odd number of times and 2m−k histories which
occurred an even number of times, the probability of having
a time steptP htodd

m j is k /2m. The probability of having a
time steptP hteven

m j is s1−k /2md. The mean success ratekwl
is obtained by averaging over the probabilities of havingt
P htoddj and tP htevenj for given k and then averaging over
the probability of havingk odd-occurring strategies. The
mean success rate is then formally given by

kwl = o
k=0

2m

PskdS k

2mwoddskd + S1 −
k

2mDwevenD , s14d

with Pskd given by Eq.(1). Equation(14) is a general ex-
pression for the mean success rate. It is valid for both non-
networked and networked populations. Figure 1 compares
the analytic results(lines) for kwl from Eq.(14) as a function
of p for different values ofm=1 andm=2. The results are in
very good agreement with results obtained by numerical
simulations. The present formalism also provides a physi-
cally transparent picture for the drop inkwl with p. Since
there is no single strategy that consistently outperforms the
others, those instantaneously better performing strategy or
strategies have a higher chance of losing in immediate time
steps. Therefore, forcing the agents to follow the better-
performing strategy of their connected neighbors actually
lowerstheir mean success rate. The deviation of the analytic
results from the numerical results at high connectivityp
comes about from the enhancement in the so-called market-
impact effect. In the MG, the action of an agent in a time
step lowers her chance of winning in that time step. While

FIG. 1. The mean success ratekwl of the agents as a function of
connectivityp for m=2 andm=1. Other parameters areN=101 and
s=2. The symbols are results obtained by numerical simulations
and the lines are analytic results obtained by using Eq.(14). Results
of numerical simulations represent an average over 1000 different
realizations of the system at each value ofp.
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this market-impact effect is taken into account satisfactorily
by Eq. (13) at low connectivityp, the enhanced connections
at high p drive too many agents to follow the strategy of a
particular agent and hence the market-impact effect becomes
enhanced and cannot be simply accounted for by Eq.(13).
We emphasize that the present formalism is closely related to
the crowd-anticrowd theory[13,14] in that the agents using a
strategy and those using the corresponding anticorrelated
partner have different success rates given by the term in the
last parentheses in Eq.(11) since the pair of strategies must
belong to different rankings.

VI. MEAN SUCCESS RATE OF AGENTS WITH DEGREE k

A useful way to describe the topological properties of a
network is the degree distribution, which is the distribution
of the number of connected neighbors among the nodes in a
network [23,27]. Statistical analysis has revealed that real
world networks exhibit degree distributions of various kinds
[23,27–29]. For classical random graphs discussed in previ-
ous sections, the degree distribution is a Poisson distribution
[30]; while for growing networks with preferential attach-
ment in its growth mechanism, the degree distribution exhib-
its power law behavior[23,27]. While the analysis in the last
section suffices for evaluatingkwl in a random network, it
will be useful to develop our formalism by focusing on
agents with a given number of neighbors, i.e., a given de-
gree. Here, we aim at studying the mean success rate of
agents with degreek in a networked MG.

Consider a particular agent havingk links to other agents.
Recall that[see Eq.(5)] the probability that an agent holds a
rank-l strategy as his best-performing strategy is given by
sal−1

k ds−sal
kds. Note that this is also the probability that his

neighbor holds a rank-l strategy as his best performing strat-
egy. Combining these probabilities for an agent and hisk
neighbors, the probabilitygsk ,k, ld of an agent withk neigh-
bors using a rank-l strategy is

gsk,k,ld = sal−1
k dsk+1ds − sal

kdsk+1ds. s15d

This follows from the fact that an agent who hask links is
equivalent to an agent who effectively hassk+1ds strategies
in hand, with repetition allowed. Recall that the success rate
or winning probability of a rank-l strategy issl −1d /k for t
P htodd

m j. The success rate of an agent withk links for time
stepstP htodd

m j is given by

woddsk,kd = o
l=1

k+1

gsk,k,ld
l − 1

k
. s16d

We should also take into account cases corresponding tot
P hteven

m j for which the mean success rate of an agent is given
by weven in Eq. (13). As a result, the success rate of an agent
with degreek is given by

kwskdl = o
k=0

2m

PskdS k

2mwoddsk,kd + S1 −
k

2mDwevenD .

s17d

For the particular case of classical random graphs, the
probability of having k links in a system withN nodes
(agents) for a given value of connectivityp is given by

Yskd = Ck
N−1pks1 − pdN−1−k. s18d

Combining with Eq.(17), the mean success rate in the popu-
lation with connectivityp is formally given by

kwl = o
k=0

N−1

Yskdkwskdl. s19d

Figure 2 shows the numerical and analytic results of
kwskdl as a function ofk for m=1 andm=2. The analytic
results are, again, in good agreement with the numerical re-
sults. The numerical results are obtained from data in many
runs with different values ofp ranging from 0øpø0.5. For
a givenp, data are obtained for values ofk around the mean
degreekkspdl. We note that, for given degreek and fixed
m, kwskdl does not depend onp, i.e., the success rate of
isolated agents in a population withp=0.01 is the same as
that for p=0.02 (if isolated agents exist). For the present
version of networked MG, the isolated agents, i.e., those
without any links, have the highest mean success rate. This
drop in kwskdl comes about from the fact agents with con-
nected neighbors effectively hold a substantial portion of the
strategies and hence they will join the crowd. By being iso-
lated, one can avoid the crowd and hence achieve a higher
success rate. We also checked thatkwl obtained from Eq.
(19) is nearly identical to that obtained by Eq.(18), for small
values ofm.

VII. DISCUSSION AND EXTENSION
TO NETWORKED BAR MODEL

We have formulated a theory applicable to agent-based
models in which a population is competing to be in the mi-

FIG. 2. The mean success ratekwskdl of agents of degreek as a
function of k for m=2 andm=1. Other parameters areN=101 and
s=2. The symbols represent numerical results obtained by carrying
out simulations within the range 0øpø0.5. The lines give the
analytic results obtained using Eq.(17).
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nority group. The population may be networked or non-
networked. The theory is based on the tendency that the sys-
tem restores itself and avoids the existence of strategies that
outperform others. This is the case for the efficient phase in
the MG. By invoking the idea that the strategy performance
ranking patterns change as the game evolves and that only a
finite number of patterns exist, it is possible to study the
ranking patterns based on the number of history bit strings
that occurred an odd number of times. The fraction of strat-
egies in each rank can be found, together with the number of
agents using a strategy of rankl in order to decide. For the
case of networked populations, care must be taken to evalu-
ate the number of agents using a strategy of rankl through
the connections. An expression for the mean success rate as a
function of connectivityp andm can be derived. Results are
found to be in good agreement with those obtained by exten-
sive numerical simulations of the networked MG. A geo-
metrical property of networks is the degree distribution. We
derived an expression for the mean success rate of agents for
a given degreek in a networked MG with the underlying
network being a classical random graph. The results are
found to be, again, in good agreement with numerical results.
The present theory has the merit of taking into account pos-
sible ties in the strategies’ performance.

The validity of the derived results depends on the assump-
tion that the system passes through quasi-Eulerian paths in
the history space in the efficient phases of both the non-
networked and networked MG. The details of the dynamics
are not important, only that we assume the equal probabili-
ties of the occurrence of the possible outcomes. The formal-
ism can also be applied or extended to other situations that
exhibit similar features. To illustrate the idea, we consider
the interesting situation in a binary-agent-resource game with
high resource levelin a highly connectedpopulation, i.e., for
high values ofp. The BAR model in a networked population
represents a networked binary version of Arthur’s El Farol
problem concerning bar attendance[2–4,7]. In the BAR
model, the winning option is no longer decided by the mi-
nority side. Instead, there is a general global resource level
L sL,Nd which is not announced to the agents. At each time
step t, each agent decides upon two possible options:
whether to access resourceL (action +1) or not. The two
global outcomes at each time step, “resource overused” and
“resource not overused,” are denoted as 0 and 1. If the num-
ber of agentsn+1ftg choosing action +1 exceedsL (i.e., re-
source overused and hence global outcome 0) then theN
−n+1ftg abstaining agents win. By contrast, ifn+1ftgøL (i.e.,
resource not overused and hence global outcome 1) then
thesen+1ftg agents win.

Numerical results for a high-resource-level BAR model
show interesting features as a function of the connectivityp.
Figure 3 shows the dependence on the mean success rate for
L=90 in an N=101 population as a function ofp. For
L.3N/4 in a nonconnected populationsp=0d, the system is
in a frozen state in the sense that the outcome is persistently
1, i.e., the resource is persistently not overused with 3N/4
winners per turn. It is observed that asp increases, the sys-
tem moves away from the frozen state[21]. A high-p limit is
eventually reached corresponding to a state of antipersistence

or double periodicity, characterized by an outcome time se-
ries with equal probability for the two possible outcomes and
a mean success rate slightly lower than 1/4. In particular, it
is observed that the value ofp [denoted bypcsmd] above
which the system reaches the high-p state, depends sensi-
tively on m and increases withm.

The present theory can be extended to estimatepcsmd. To
proceed, we propose a criterion that the system is antipersis-
tent only if Aoddskd.L for all k. This can be understood
easily since antipersistence implies that fortP htodd

m j for the
history m concerned, the outcome will be opposite to that in
the last occurrence of the history. However, in the BAR
model, forAoddskd,L, the winning option in the last occur-
rence of the history wins again, and the system ceases to be
antipersistent. We further note thatAoddskd is a monotoni-
cally decreasing function ofk, with a minimum atk=2m

when all the possible histories occurred an odd number of
times. This behavior follows from Eq.(10), and we have also
checked it against numerical results.

For a given high resource levelL, asp decreases from the
high-p state, the difference betweenAoddskd and L drops.
Eventually whenAoddskd,L, the system is no longer anti-
persistent for somek. As Aoddskd takes on its minimum value
at k=2m, an estimate on the breakdown of antipersistent be-
havior is then given by the condition

Aodds2md = L. s20d

Equation(20) can be used to estimate the critical valuepcsmd
for fixed resource level. To test the validity, we take a system
of N=101,L=90, ands=2 (see Fig. 3). The values ofpc
turn out to be pc=0.0220 for m=1, pc=0.0592 for m
=2, pc=0.2738 for m=3, and pc=0.9988 for m=4, as
marked by the arrows in Fig. 3. The results capture the trend

FIG. 3. The mean success ratekwl as a function of connectivity
p in the BAR model at high resource levelsL=90d for m=1, 2, 3, 4
obtained by numerical simulations. The lines are guides to the eye.
Other parameters areN=101 ands=2. Results of numerical simu-
lations represent an average over 1000 different realizations of the
system at each value ofp. The arrows indicate the estimate ofpcsmd
using Eq.(20), above which the system goes into a high-p state.
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that pcsmd increases withm. For m=5, our estimate shows
that the system cannot achieve an antipersistent high-p state
even if p=1, a result again consistent with numerical results
[21]. Similarly, one may vary the resource levelL at givenp
and Eq.(20) can be used to estimate the critical resource
level Lcsmd above which the system starts to deviate from an
antipersistent state.

The formalism can also be applied to a non-networked
BAR game with resource levelL*N/2, for which the out-
come series and thus the history series also exhibit antiper-
sistence or doubly periodic features[8]. While we have illus-
trated the validity of the present theory by focusing on
models for which the history bit strings are visited with equal
probability as the system evolves, we stress that the idea of
analyzing agent-based models through the ranking of the per-
formance of the strategies or groups of strategies and the
number of agents using a strategy of a certain rank is general.
The formalism can be readily extended to treat cases in
which the outcome(hence history) time series shows known
features other than antipersistence. Depending on the model
under consideration, the theory can be suitably modified by
making use of the statistics in the outcomes series of the
model to work out the probability of occurrence of each his-
tory bit string and the ranking in the strategies’ performance.
For example, the theory can be modified to study each of the
many states that a high-resource-level BAR game passes
through from the frozen state atp=0 to the high-p state as
the connectivity varies. The starting point is to give a known
outcome series, e.g., 11101110… for m=1 and
11111101111110… for m=2 just off the frozen state. In these
cases, only a portion of the whole history space is being
explored by the system and the system does not show anti-
persistent features. Even so, once the pattern of history time
series is known, the part of the full history space that matters
is also known and thus the ranking pattern of the strategies
can be worked out[31]. Similar situations also happen in the
networked BAR model[21] with high resources[32]. There
are other models, e.g., the majority game, for which the
equations derived here specifically for the MG cannot be
applied directly. Typically in these models some strategies
have runaway VPs and hence the assumption of antipersis-
tence in driving the results in the present work breaks down.
We stress that, even for these models, a proper starting point
in analyzing the results is, as in the present approach, to
work out the strategy performance ranking pattern. It is
worth pointing out that “unexpected changes”[33] such as
crashes and bubbles in markets can be modeled within the

framework of the minority game by including complications
such as a finite time horizon in evaluating the strategy per-
formance [2,34] and a confidence level for the agents to
evaluate their cumulative performance in deciding whether
to participate in each turn of the game[2,35,36]. These ad-
ditional considerations lead to more complicated probabili-
ties of occurrence of history bit strings and hence more in-
volved strategy ranking patterns. While it will be hard to
calculate the results of these models directly, the ideas in the
present approach can be extended to analyze numerical re-
sults systematically by working out the strategy ranking pat-
tern from the outcome series. For other models in which
imitation through networking does not result in a simple en-
largement in the number of strategies that an agent holds,
Eqs.(7)–(9) need to be properly modified.

We have assumed uniform initial conditions in our deri-
vations. There are several possible sources of nonuniformity
in the initial conditions that may affect our results. For ex-
ample, there may be nonuniform distribution of strategies
among the agents or intrinsic nonuniformity in the possible
strategies being allocated to the agents. In these cases, the
strategy ranking pattern can be found by analyzing the out-
come series. Quite generally, there will be fewer agents using
the better performing strategy or strategies, and hence Eqs.
(7)–(9) needed to be modified. Another source of nonuniform
initial conditions is a bias in the initial VPs. In this case, it
has been shown[26] that the system goes through a transient
behavior and relaxes to the steady state VP pattern, with
possible persistent(i.e., majoritylike) behavior in the tran-
sient. To analyze the transient behavior, it is again important
to follow the strategy performance ranking patterns. Using
the ideas that the ranking pattern of the strategies and the
number of agents using a strategy of a certain rank for deci-
sions play the crucial role in analyzing a wide class of agent-
based models, the present formalism can also be extended to
study different variations on the basic MG, such as the ther-
mal MG [37,38] and the MG with biased strategy pools[39];
and to different versions of the networked MG in which
neighboring agents compare their wealth instead of strategy
performance[40,41].
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