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We formulate a theory of agent-based models in which agents compete to be in a winning group. The agents
may be part of a network or not, and the winning group may be a minority group or not. An important feature
of the present formalism is its focus on the dynamical pattern of strategy rankings, and its careful treatment of
the strategy ties which arise during the system’s temporal evolution. We apply it to the minority game with
connected populations. Expressions for the mean success rate among the agents and for the mean success rate
for agents withk neighbors are derived. We also use the theory to estimate the value of conngrtbioye
which the binary-agent-resource system with high resource levels makes the transition into the high-
connectivity state.
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[. INTRODUCTION Theoretical analysis of the MG has been the focus of

Agent-based models form an important part of researcii@ny studies4,7,11-2Q. Mapping the MG into the lan-
on complex adaptive systenid]. For example, the self- 9uage of disordered spin systems makes the machinery in
organization of an evolving population consisting of agentsStatistical physics of disordered system, most noticeably the
competing for a limited resource has potential applications iféPlica trick, useful in the study of models of a competing
areas such as economics, biology, engineering, and socigppulation. For the MG, calculations based on the repllca
sciences[1,2. The bar-attendance problem proposed bymethod work well for the case of a large strategy pool, i.e.,
Arthur [3,4] constitutes a typical setting for such a system inwhen the strategy pool is much larger than the strategies
Wh|Ch a popu'ation of agents decide Whether to go to a popuactua”y- be|ng L:Ised In.malfll’.]g decisions. This is .I’efel‘red. to
lar bar having limited seating capacity. The agents are inas the informationally inefficient phase because information
formed of the attendance in past weeks, and hence the agersleft in the resulting bit-string patterns for a single realiza-
share common information, interact through their actionstion of the game. In the informationally efficient phase, the
and learn from past experience. The problem can be simplivhole pool of strategies tends to be in play during the game.
fied by considering binary games, either in the form of theThe crowd-anticrowd theory gives a physically transparent
minority game(MG) [5,6] or in the more general form of a quantitative theory Qf the opserved features in .thIS regime, as
binary-agent-resourcéBAR) game [7,8]. For modest re- Well as in the inefficient regime. The crowd-anticrowd theory
source levels in which there are more losers than winnerdS based on the fact that it is the difference in the numbers of
the minority game proposed by Challet and Zh#&@] rep-  agents playing a stratedy and the corresponding anticorre-
resents a simple, yet nontrivial, model that captures many dhated strategyR that plays the most important role in the
the essential features of such a competing population. understanding of the fluctuations and hence performance of

The MG considers an odd numbkrof agents. At each the whole population.
time step, the agents independently decide between two op- The crowd-anticrowd theory is a microscopic approach in
tions 0 and 1. The winners are those who choose the minoritthe sense that it follows the strategy play of the agents in the
option. The agents learn from past experience by evaluatingopulation. While this leads to microscopically correct equa-
the performance of their strategies, where each strategy magiens, in practice these equations are evaluated by simply
the available global informatio(i.e., the record of the most time averaging over the path taken by the strategy rankings.
recentm winning options to an action. One important quan- A naive time averaging over all histories becomes more dif-
tity in the MG is the standard deviatian of the number of ficult to implement as the number of ties in strategy scores
agents making a particular choice. This quantity reflects théncreases, since such ties affect the number of agents playing
performance of the population as a whole in that a small a given ranking of strategy and hence must be incorporated
implies on average more winners per turn, and hence axplicitly in the time average. The effect of strategy ties be-
higher success rate per turn per agent. In the M®xhibits  comes increasingly important as decreases, i.e., size of
a nonmonotonic dependence on the memory sizef the  strategy space decreases, since the chance of ties arising will
agentg10-13. Whenm is small, there is significant overlap then increase. In the efficient phase at very loytherefore,
between the agents’ strategies. This crowd eff@ct3,14  there are frequent ties in the strategy performgd¢21], and
leads to a larger, implying the number of losers is high. hence the time averagings within the crowd-anticrowd theory
This is the crowded, or informationally efficient, phase of therequire special care. In the present paper, we present a
MG. In the informationally inefficient phase whera is  complementary theoretical treatment for this regime in order
large, o is moderately small and the agents perform betteto explicitly account for such strategy ties. The resulting
than if they were to decide their actions randomly. theory amounts to a nontrivial reorganization of the time
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averagings within the crowd-anticrowd theory. Like the At each turn, the agent follows the prediction of her best-
original crowd-anticrowd theory, it is applicable to both non- scoring strategy. A random choice will be made for tied strat-
networked and networked populatiofid1,22. The theory egies.

we present is based on the idea of following the patterns of The networked minority gamg1,22 explores theunc-

the ranking of strategies as the game evolves in time, withouionality of an underlying network in the context of a popu-
knowing the details of the ranking of each strategy. The eflation competing for limited resource. At each time step
fects of tied strategies are taken into account by consideringach agen{node decides on one or two options, as in the
the number of strategies belonging to each rank as the gani@sic MG. Each agent decides in light(©f global informa-
evolves. To illustrate the applications of the theory, we showtion which takes the form of the history of thre most recent
that the theory explains the features observed in numericalobal outcomes as in the basic MG, a(iid local informa-
results of a networked version of MG. The theory also allowstion obtained via network connections. The connections here
the evaluation of the success rate of agents with a giveneed not be physical—it only matters that the connected
number of connected neighbors. The latter is important in th@eighbors are those with whom an agent can communicate.
study of the functionality of an underlying netwojR3] ina At each time step, each agent compares the score of its own
competing population. Since analytic techniques such as thigest-scoring strateggor strategieswith the highest-scoring
replica trick fail in the efficient phase of the MG, we focus strategy(or strategiesamong the agents to whom he is con-
the applications of our theory specifically on this regime. Thenected. The agent adopts the action of whichever strategy is
present theory thus provides a framework for analytic treathighest scoring overall, using a coin toss to break any ties.
ment of nontrivial collective dynamics in agent-based mod-The network can be a classical random network or take on
els of competing populations. the geometry of a growing scale-free netw@28]. For sim-

The plan of the paper is as follows. In Sec. Il, we defineplicity, we here assume a random network, where the con-
the MG in non-networked and networked populations. Innection between any two agentse., hodeg exists with a
Sec. lll, we discuss the different ranking patterns based oprobability p. Numerical result$21] show that the presence
performance of the strategies as the game evolves, and tloé connections lowers the global performance of the popula-
fraction of strategies in each rank. The number of agentsion, while ensuring fairness by lowering the spread in the
using a strategy belonging to a particular rank is derived fosuccess rates among the agents. Here, we aim at formulating
both non-networked and networked MG in Sec. IV. In Sec.a theory that can be applied to explain the features observed
V, we apply the theory to derive an expression for the mearin the numerical simulations. Since the effect of such con-
success rate in the efficient phase as a function of the comections is typically to increase the chances of strategy ties,
nectivity in the population and compare results with thoseparticularly at lowm, this motivates the present theory’s ap-
obtained by numerical simulations. An alternative way toproach of tracking strategy patterns in time.
study the mean success rate is to decompose the population
into agents with different numbers of connected neighbors.
An expression for the mean success rate of agents kvith
connected neighbors is derived in Sec. VI. Results are in The two key ingredients for the present theory @yethe
agreement with numerical simulations. Section VII gives apatterns of strategy rankings according to performance,
discussion on the limit of validity of the theory and shows hased on the strategies’ virtual points as the game proceeds;
how the theory can be extended to study BAR models at higlnd(ii) the fraction of strategies in each rank for each rank-
connectivity. ing pattern. In the following two subsections, we discuss

these two points. The discussion is valid for populations ei-
Il. THE MINORITY GAME ther with or without connections.

IIl. RANKING THE STRATEGIES

The basic ME5] comprises olN agents competing to be
in a minority group at each time step. The only information
available to the agents is the history. The history is a bit As a particular run of a given game evolves, the pattern of
string of lengthm recording the minority option for the most strategy rankings also evolves. The instantaneous strategy
recentm time steps. There are a total of possible history ranking depends on the number of history bit strings that
bit strings. For examplen=2 has 2=4 possible global out- have occurred andd number of times and the next outcome
come histories: 00, 01, 10, and 11. At the beginning of thewill depend on whether the current history bit string has
game, each agent piclssstrategies, with repetition allowed. occurred an odd or even number of times. Both of these
They make their decisions based on their strategies. A strafactors are important in the calculation of the mean success
egy is a look-up table with™entries giving the predictions rate of the population.
for all possible history bit strings. Since each entry can either Suppose we are at a given moment in the run of a game.
be 0 or 1, the full strategy pool containd trategies. Ad- Let u be the current history bit string that the agents are
aptation is built in by allowing the agents to accumulate ausing for decisions. Left;y4 be the set of turngi.e., time
merit (virtual) point for each of hes strategies as the game step$ so far in which a history has occurred an odd num-
proceeds, with the initial merit points set to zero for all strat-ber of times(including the initial history bit string that starts
egies. Strategies that predicted the winnjluging) action at  the gameg and {t; . be the set of turns so far in which a
a given time step, are assign@hiductegione(virtual) point.  history » has occurred an even number of tinjed]. For

A. Ranking pattern
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small values ofm, i.e., in the efficient phase of the MG, the effect as the outcome was 1 in the last occurrence of the
outcome time series exhibits the feature of antipersistence dnistory. The rank-1 strategies will lose and the rank-3 strat-
double periodicity[10-12,25,28 This feature implies that egies will win. As a result, the ranking of the strategies is
all history bit strings occur with equal probabilities. It meansthen reduced to two ranks with rank 1 including strategies
that for a current history. based on which the agents decide, that predict 1 for history 00; and rank 2 including strategies
if the winning side isp (5 can be 0 or fwhent e {t; .}, the  that predict O for history 00.
outcome is 1-7 with probability unity in the next occur- It is important to note that for a givem in the efficient
rence ofu. It follows that no strategies could perform better phase, there are onlyfenite number of patternfor the rank-
than the others in an average over time, and the virtual pointg of the strategy performance. In general, we have the fol-
(VP9 of the strategies cannot show a runaway behavior, i.elpwing result for the strategy performance ranking pattern.
the VPs of strategies will not keep on increasing or decreas- If a number ofx histories occurred an odd number of
ing. This property is intimately related to the fact that thetimes, the strategies will be divided inte+1 ranks. The
Eulerian trail is an underlying quasiattractor of the game inranking is as follows: rank 1 including strategies that pre-
this efficient regimg26]. By focusing on whether a history dicted the correct outcome for atlhistories concerned; rank
has occurred an odd or even number of times during a rurg including strategies that predicted the correct outcome for
we are picking out what is essentially the most importantx—1 histories concerned:- ; rank| including strategies that
aspect of the outcome series. predicted the correct outcomes fa—I+1 histories con-
For a particular turrt, we define the ranking of the strat- cerned: - ; rank k+1 including strategies that predicted the
egies according to their performance up to that point in timegrrect outcome for 0 histories concerned.
based on the VPs of the strategies. The rank-1 strategy or For a given value ofn, 0<x<2™ as there are ™ pos-
strategies have the highest VPs. The rank-2 strategies are thpe histories. In the efficient phase, while the numbers of
second best-performingaving the second highest VIPand  occurrence for every history are the same when averaged
so on. For smalm (efficient phasg the ranking pattern of over a long timex (k=0,1,2...,2" histories may occur
the strategies depends ¢me number of historiethat have  an odd number of times in each time step as the game
an example for the case afi=2 where there are four pos- he characterized by the parameterFor a time step corre-
sible historieg00), (01), (10), and(11). At t=0, all strategies sponding tox=0, i.e., all the histories had occurred an even
are assigned the same VP. There is only one rank, called raniymper of times, there is only one rank and all the strategies
1, of the strategies, with all the strategies belonging to thigje in the same rank since they have tied \(Psro VP3. In

rank. This is also the case when the system returns to 8ther words. there is onl onee.,C m_ 1) way to achieve a
situation equivalent td=0 after visiting every possible path ranking patt’ern that congists or?ly % f rank 1y

from one history to another an equal number of timest At e ) . .

=1, let 00 be chz corresponding h?stc(nyithout loss of gen- Next we deduce the prO.babllll?({O of h‘?lV'ngf( histories

erality, the random seed history is taken to bg 0be agents oceur an Od.d number of times, thou? invoking t0o many
ﬁnown details of the dynamics. Assuming that each history

decide in a random fashion as the history has not occurre .
before (or has occurred an even number of times before as probabl_llty 1/2 to appear as one that_ has oc_curr_ed an odd
number of times, then out of a total of"Aistory bit strings,

The outcome would be (or 0) with probability 1/2. Let the . . o
outcome be 1, for example. The history bit string will be- E)heer E’)ﬁ?ﬂigi'tép(") of having« histories occur an odd num-

come 001. Prior to the curremh=2 bit string of 01, one
history bit string(namely, 00 occurred once. The strategies ol 1\2" moom
are now divided into 2 ranks with rank 1 including strategies P(x)=C% (E) =CZ /2%, (1)
that predict 1 for history 00; and rank 2 including strategies
that predict O for history 00. The strategy VP pattern thus As the game evolves, the system maps out a path in the
consists of two ranks corresponding to assigning +1 VP fohistory space[26]. As the game goes from one history to
those strategies in rank 1 and -1 for those in rank 2. another, it also makes transitions from one strategy perfor-

If the outcome is also 1 dt2, the strategies that predict mance ranking pattern to another. Interestingly, the resulting
1 for the history 01 will have a higher VP. Note that the ranking pattern can be seen as a set of highly correlated,
history bit string is now 0011. Prior to the current bit string time-dependent random walks where each walk reflects the
of 11, two m=2 bit strings 00 and 01 occurred once. Thetemporal dynamics of a given strategy’s VPs. The dynamical
strategies will then be divided into three ranks after this timeevolution of this pattern is also of interest in its own right.
step with rank 1 including strategies that predict 1 for bothNote that there may be frequent ties in the strategies’ perfor-
histories 00 and 01; rank 2 including strategies that predict Inances. A merit of the present approach is that we take ex-
for one of the two histories 00 and 01; and rank 3 includingplicit account of possible ties in performance among the
strategies that predict O for both histories 00 and 01. Thatrategies by grouping them into the same rank. This is im-
strategy VP pattern thus consists of three ranks corresponghortant in the efficient phase where there are frequent tied
ing to a VP of +2 for those strategies in rank 1, O for those inVPs among the strategies.
rank 2, and -2 for those in rank 3. ) o

If at some timet, the history 01 happens again, i.e., the B. Fraction of strategies in each rank
history occurred an odd number of times prior to the one The fraction of strategies in a particular rank for a given
under consideration, the outcome will be 0 due to the crowd/alue ofx can be calculated readily. It turns out that the ratio
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of the number of.strategies in increasing ra(rlgcall rank 1 N, = N[(¢f<)3 - (a)®], (5)
corresponds to highest YPollows the numbers in the Pascal )

triangle. When all the histories occurred an even number owith ag=1 as given by Eq(2). Forl=«+1,

times, there is only one rank with a fraction unity of strate- N,.; = N(a’)3 (6)

gies, i.e., all strategies, belonging to the rank. If only one et o

history («=1) occurred an odd number of times, there are As an example, take=2, N=101, and consider a mo-
two (=«+ 1) ranks with half(fraction 1/2 of the strategiesin ment in the game corresponding #e=4. Hence we have
rank 1 and the other haffraction 1/2 in rank 2. The ratio of +1=5 ranks. The ratio of strategies in these ranks is
the fractions of strategies in the two ranks is 1:1. If two1:4:6:4:1. Theaverage number of agents using strategies in
histories(k=2) occurred an odd number of times, there areeach rank in these turns is given bi,;=12.23,N,
three(=«+1) ranks, with a fraction 1/4 of the strategies in =41.03,N3=37.88,N,;=9.47, andN5=0.39. These numbers
rank 1, 1/2 in rank 2, and 1/4 in rank 3. The ratio of thechange with time as the game evolves to time steps with
fractions is1:2:1. Forthree histories occurring an odd num- different values ofk. Knowing the number of agents using
ber of times, there are four ranks with the ratio of fractions oféach rank of strategies, it is then possible to evaluate analyti-
strategies in the ranks given Hy.3:3:1, and so on. Fox  cally the average number of agents making a particular de-
histories occurring an odd number of times, the fraction ofcision and the mean success rate of the agents, as we shall
strategies in rank 1 i€4/2~, the fraction of strategies in rank discuss in later sections.

2 is C{/2*, and so on. In general, the fraction of strategies in
rank | is C,/2%, where the denominator comes from

serlee =2+ The ratio of the fractions of strategies in dif- B. Networked population

ferent ranks is thus given b@5:Cy:---:C[<; -+ CX, which Let p be the probability that two randomly chosen agents
are the numbers in the Pascal triangle. are connected. Fqu+ 0, the agents may decide based on a
strategy that they do not hold. As a result, the number of
IV. NUMBER OF AGENTS USING A BEST STRATEGY agents who actuallysea strategy for decision in a particular
BELONGING TO RANK | rank is, in generalpot equal to the number of agerit who
A. Nonconnected population hold a best-scoriﬂg strategy belonging to that r§k]. The

Consider the case of a nonconnected population, i.e., bg_umber of agentl(p) who decide by using a rarlkstrategy

sic MG or p=0 in a networked MG. As an agent uses the ©@N formally be expressed as a sum of two terms

best-scoring strategy up to the moment of making a decision, 5 okl

he will use the strategy with the lowest rank among she N/(p) =N, + > AN;, (7)
strategies that he was randomly assigned at the beginning of j=l+1

the game.

Let x be the number of histories that occurred an oddVhereN is the number of agents who hold a ranstrategy
number of times. It is convenient for later discussion to in-2S their best-performing strategmdare not linked to agents
troduce the probability with a better(hence lower rankingperforming strategy, and

the second term represents all those using a tastkategy
1 « 1 - K due to the presence of links. Writing=1-p, N, is then
4 = 2_K|:j2+1 Cra= 27% Cr, ) given by

K+l

— 1-1,
that an agent holds a strategy with performanggse than N, = N,gi=N | (8)
rank j. For an agent using a rank-1 strategy to decide, he

. ith N, given by Egs.(5) and (6). In Eq. (7), AN, is the
must possess at least one rank-1 strategy. This happens with ! . b=
a probability 1-{a%)*, where(a%) is the probability that the number of agents who hold a raikstrategy as their best

: performing strategy, but they use a rangtrategy for deci-
agent holdss strategies that are all worse than rank 1. ion th re linked t nt rrvin h a strat-
Let N, be the number of agents who hold a strategy inSO because they are ed to agents carrying such a stra

. : . egy. Note thatj>| because an agent will use the best-
rank| as their best strategy, for a given In the basic MG, _performing strategy among his own strategies and his

this is also t_he ”“”.‘ber .Of agents who W".I use a strategy Iy, e cted neighbors’ strategies in our networked MG model.

rank| to decide thelr action. For a populationf¥fagents, it Now consider an agent who does not hold a strategy in rank

follows that for givenx | butusesa ranki strategy held by one of his neighbors. This
N; =N[1 - (a})3]. (3) happens only whetii) he is not linked to any agent who

holds a strategy better than rahkthe probability is thus

qu:;iNi) and (ii) he is linked toat leastone agent who holds

a rank} strategyfthe probability is(1-g)]. Hence we have

Similarly, for an agent using a rank 2 strategy, he must hol
at least one rank 2 strategynd must not hold any rank 1
strategy. Therefore,

N, = N[(af)° - (a2)°]. () ANy = Ny (@) (1 - o). (9)

In general the number of agents holding a rargtrategy(l Equation(7) for N(p), coupled withﬁ given by Eq.(8), AN;
=1,2,...,k) as their best strategy is given by given by Eq.(9), andN; given by Eqs(5) and(6), gives the
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' ) ' " ! - ' cerned. Thus, the agents using a rasirategy have a prob-
[ ® m=1simulation | 1 ability (x—1+1)/« of choosing the previous winning option
0 m=2 simulation . : .
m=1 theory for the historyu based on which every agent decides. Due to
cale | m=2 theory J crowd effect, this is also the probability that the agents using
i a rank} strategy lose. Therefore, they will win with a prob-
ability 1-(k-1+1)/k=(I-1)/x. The mean success rate
Woad k) for a givenk andt e {tf,4 is
s k+1 N( ) -1
Yo. . Woqd ) = 2 —'Np (—) (11
1=1 K
If te{tyos, the agents decide randomly and the mean
. number of agents choosing a particular optiolNi. In this
[ ] [ ] o . .
o o case, the probability of having agents choose a particular
02| - option is
1 L 1 L 1 M 1
0.0 0.1 0.2 03 P,=Ch/2Y, (12

as every agent has two options. For the MG, the winners are
FIG. 1. The mean success r&t of the agents as a function of those in the minority group. There anewinners forn<(N
connectivityp for m=2 andm=1. Other parameters ake=101 and  —1)/2 and(N-n) winners forn=(N+1)/2. The mean suc-
s=2. The symbols are results obtained by numerical simulationgegg ratave,e, for t e {t“ .} is then given by
and the lines are analytic results obtained by using(E4). Results

. . . . (N-1)/2 N
of numerical simulations represent an average over 1000 different n N-n
realizations of the system at each valugpof Ween= > PnN + 2 Pn_N : (13

n=0 n=(N+1)/2
number of agents who use a strategy in rar&r deciding We note that one may also make the crude approximation
their action in a connected population. that wg,en=1/2, without taking into account the fluctuations
in the number of agents making identical decisions.
V. APPLICATION: MEAN SUCCESS RATE Given a value ofx, i.e., there arec histories which have

The mean success rate) (or mean wealthof the agents  occurred an odd number of times anl-2¢ histories which
is the average number of winners per agent per turn. Thi§ccurred an even number of times, the probability of having
quantity reflects the global performance of the population ag time stept e {t{y is «/2™. The probability of having a
a whole. This quantity is also closely related to the fluctuatime stept e {tg ot is (1-«/2™). The mean success rate)
tions (or standard deviatigrin the number of agents choos- is obtained by averaging over the probabilities of having
ing a particular option as the game proceeds. A smaller fluce {t,qd andt e {tgen for given « and then averaging over
tuation implies a higher mean success rate. Figure 1 showbke probability of havings odd-occurring strategies. The
(w) as a function of connectivitp obtained by numerical mean success rate is then formally given by
simulations form=1 andm=2 (symbolg in a population of om
N=101 agents witls=2 strategies per agent. Asincreases, — X _k
(w) decreases, together with a drop in the spread of the suc- (W) Z’O P(K)< ZmWOdd(K) " <1 2m>We’e">' (14)
cess rates among the agef#3]. Thus in the networked MG . ) . .
model, while higher connectivity ensures faimess, the effiVith P(«) given by Eq.(1). Equation(14) is a general ex-
ciency also decreases. Qualitatively, the drogvin comes ~ Pression for the mean success ratg. Itis \{ahd for both non-
about from the enhanced crowd effect@increases. Here, Networked and networked populations. Figure 1 compares
we derive an expression for the mean success rate as a furff€ analytic resultgines) for (w) from Eq.(14) as a function
tion of connectivityp. Consider a time stepcorresponding  ©f P for different values om=1 andm=2. The results are in
to « histories having occurred an odd number of timesVery good agreement with results obtained by numerical
Given this,t may belong to{t” .} or {t“, for the particular simulations. The present formalism aI;o prpwdes a physi-
history bit stringu that the population is facing when mak- Cally transparent picture for the drop {w) with p. Since
ing a decision, since there aré-2« histories which have there is no single strategy that consistently outperforms the
occurred an even number of times. others, those instantaneously better performing strategy or
If te {t}, the mean number of agents choosing the lasptrategies have a higher chance of losing in immediate time

winning option of the corresponding history is given by steps. T_herefore, forcing the agents to fo_IIow the better-
performing strategy of their connected neighbors actually

k+1 " .. :
_ i ~ k=1+1 lowerstheir mean success rate. The deviation of the analytic
Aoad k) = 2, Ni(p) P ' (10 results from the numerical results at high connectivity
1=1 .
comes about from the enhancement in the so-called market-
This is because the rankstrategies must have made the impact effect. In the MG, the action of an agent in a time
correct predictions for—1+1 out of the x histories con- step lowers her chance of winning in that time step. While
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this market-impact effect is taken into account satisfactorily ' " ' - :
by Eq.(13) at low connectivityp, the enhanced connections [ . ﬁ; ::g:::gg: 1
at high p drive too many agents to follow the strategy of a m=1 theory
particular agent and hence the market-impact effect becomes 04° | m=2 theory X
enhanced and cannot be simply accounted for by ([E8).

We emphasize that the present formalism is closely related to
the crowd-anticrowd theorjl3,14 in that the agents using a
strategy and those using the corresponding anticorrelated
partner have different success rates given by the term in the
last parentheses in E¢l1) since the pair of strategies must
belong to different rankings.

<wik)>

VI. MEAN SUCCESS RATE OF AGENTS WITH DEGREE k L . 1 ) 1

A useful way to describe the topological properties of a k
network is the degree distribution, which is the distribution
of the number of connected neighbors among the nodes in a F!G- 2. The mean success ra@k)) of agents of degrek as a
network [23,27. Statistical analysis has revealed that realfunction ofk for m=2 andm=1. Other parameters ale=101 and
world networks exhibit degree distributions of various kindsS=2- The symbols represent numerical results obtained by carrying
[23,27-29. For classical random graphs discussed in previ2Ut Simulations within the range=0p=<0.5. The lines give the
ous sections, the degree distribution is a Poisson distributioﬁnalyt'c results obtained using Q7).
[30]; while for growing networks with preferential attach-
ment in its growth mechanism, the degree distribution exhib- For the particular case of classical random graphs, the
its power law behaviof23,27. While the analysis in the last Probability of havingk links in a system withN nodes
section suffices for evaluatingw) in a random network, it (agents for a given value of connectivitp is given by
will be useful to develop our formalism by focusing on — N-1 k1 _ q\N-1-+k
agents with a given number of neighbors, i.e., a given de- YR =GP -p) ' (18)
gree. Here, we aim at studying the mean success rate @ombining with Eq(17), the mean success rate in the popu-
agents with degrek in a networked MG. lation with connectivityp is formally given by

Consider a particular agent havifdinks to other agents. N-1
Recall thatisee Eq(5)] the probability that an agent holds a _
rankd strategy as his best-performing strategy is given by w) = E)Y(kxw(k) ). (19
(<13 (o). Note that this is also the probability that his _ _ _
neighbor holds a rankstrategy as his best performing strat-  Figure 2 shows the numerical and analytic results of
egy. Combining these probabilities for an agent and khis (W(k)) as a function ofk for m=1 andm=2. The analytic
neighbors, the probability(k,k,|) of an agent withk neigh-  results are, again, in good agreement with the numerical re-

bors using a rank-strategy is sults. The numerical results are obtained from data in many
1 1 runs with different values op ranging from G<p=<0.5. For
Yk, K1) = () <D = (o) k4D, (15 agivenp, data are obtained for values lofiround the mean

This follows from the fact that an agent who Hadinks is degreek(p)). We note that, for given degree and fixed

equivalent to an agent who effectively hés-1)s strategies ™ (W(K)) does not depend op, i.e., the success rate of
in hand, with repetition allowed. Recall that the success ratésolated agents in a population wiir0.01 is the same as
or winning probability of a rank-strategy is(l— 1)/« for t that for p=0.02 (if isolated agents exist For the present

e {t“,}. The success rate of an agent witinks for time version of networked MG, the isolated agents, i.e., those
step(;gt e {th is given by without any links, have the highest mean success rate. This
Ol

drop in(w(k)) comes about from the fact agents with con-
-1 nected neighbors effectively hold a substantial portion of the

Woad K, ) = 2, y(k,k,)—. (16)  strategies and hence they will join the crowd. By being iso-

I=1 K lated, one can avoid the crowd and hence achieve a higher

We should also take into account cases correspondirtg toSUCCeSS rate. We also checked tha} obtained from Eq.

e {t“ .+ for which the mean success rate of an agent is givefi19) is nearly identical to that obtained by Ed8), for small

by Weenin Eq. (13). As a result, the success rate of an agent/alues ofm.

with degreek is given by

k+1

. VII. DISCUSSION AND EXTENSION
K K
Wiy =S P(K)(Z_mwodd(kv 9+ (1 _2_m>wa}en)_ TO NETWORKED BAR MODEL
k=0

We have formulated a theory applicable to agent-based
(17 models in which a population is competing to be in the mi-
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nority group. The population may be networked or non-
networked. The theory is based on the tendency that the sys-
tem restores itself and avoids the existence of strategies that
outperform others. This is the case for the efficient phase in
the MG. By invoking the idea that the strategy performance
ranking patterns change as the game evolves and that only a
finite number of patterns exist, it is possible to study the
ranking patterns based on the number of history bit strings
that occurred an odd number of times. The fraction of strat-
egies in each rank can be found, together with the number of
agents using a strategy of rahkn order to decide. For the
case of networked populations, care must be taken to evalu-
ate the number of agents using a strategy of rattkkough

the connections. An expression for the mean success rate as a
function of connectivityp andm can be derived. Results are
found to be in good agreement with those obtained by exten-
sive numerical simulations of the networked MG. A geo-

<w>

0.9

08

0.7

06

0.5

04

03

0.2

PHYSICAL REVIEW E 70, 056102(2004)

- a1
—o—m=2|]

—a—m=3

—v—m=4
\V\V\v i

) N N
N \ \v\v-
5 e
| \ y KA/A\A_
o
Gl 05— 0 —p—p——0
1 " 1 " 1 " 1 1 " 1

0.0 0.1 0.2 03 04 0.5

P

metrical property of networks is the degree distribution. We FIG. 3. The mean success rdte) as a function of connectivity
derived an expression for the mean success rate of agents " the BAR model at high resource lewé=90) for m=1, 2, 3, 4

a given degre& in a networked MG with the underlying

obtained by numerical simulations. The lines are guides to the eye.

network being a classical random graph. The results ar@ther parameters afg=101 ands=2. Results of numerical simu-

found to be, again, in good agreement with numerical result

gations represent an average over 1000 different realizations of the

The present theory has the merit of taking into account pos3YStem at each value pf The arrows indicate the estimatem{m)

sible ties in the strategies’ performance.
The validity of the derived results depends on the assump-

using Eq.(20), above which the system goes into a higlstate.

tion that the system passes through quasi-Eulerian paths R double periodicity, characterized by an outcome time se-
the history space in the efficient phases of both the nonties with equal probability for the two possible outcomes and
networked and networked MG. The details of the dynamict mean success rate slightly lower than 1/4. In particular, it
are not important, only that we assume the equal probabiliis observed that the value @ [denoted byp.(m)] above
ties of the occurrence of the possible outcomes. The formawhich the system reaches the higtstate, depends sensi-
ism can also be applied or extended to other situations thdtvely on m and increases witm.

exhibit similar features. To illustrate the idea, we consider

The present theory can be extended to estimpgt®). To

the interesting situation in a binary-agent-resource game withroceed, we propose a criterion that the system is antipersis-

high resource leveh a highly connectegbopulation, i.e., for

tent only if Aygq(k)>L for all «. This can be understood

high values ofp. The BAR model in a networked population easily since antipersistence implies that fer{ts,} for the
represents a networked binary version of Arthur's El Farolhistory u concerned, the outcome will be opposite to that in

problem concerning bar attendan{2-4,7. In the BAR

the last occurrence of the history. However, in the BAR

model, the winning option is no longer decided by the mi-model, forA,44x) <L, the winning option in the last occur-
nority side. Instead, there is a general global resource leveknce of the history wins again, and the system ceases to be
L (L<N) which is not announced to the agents. At each timeantipersistent. We further note thAty{«) is a monotoni-
step t, each agent decides upon two possible optionscally decreasing function ok, with a minimum atx=2"

whether to access resourte(action +1) or not. The two

when all the possible histories occurred an odd number of

global outcomes at each time step, “resource overused” animes. This behavior follows from E@10), and we have also
“resource not overused,” are denoted as 0 and 1. If the nunehecked it against numerical results.

ber of agent:,4[t] choosing action +1 exceeds(i.e., re-
source overused and hence global outcomehen theN
-n,,[t] abstaining agents win. By contrasthif;[t]<L (i.e.,
resource not overused and hence global outcoméhdn
thesen,,[t] agents win.

Numerical results for a high-resource-level BAR modelhavior is then given by the condition

show interesting features as a function of the connectjvity
Figure 3 shows the dependence on the mean success rate for
L=90 in an N=101 population as a function gb. For

L>3N/4 in a nonconnected populatiép=0), the system is

Agad2™ = L.

For a given high resource leve| asp decreases from the
high-p state, the difference betweek, () and L drops.
Eventually whenAgy{x) <L, the system is no longer anti-
persistent for some. As A,yf ) takes on its minimum value
at k=2", an estimate on the breakdown of antipersistent be-

(20)

Equation(20) can be used to estimate the critical vapsem)

in a frozen state in the sense that the outcome is persistentfyr fixed resource level. To test the validity, we take a system

1, i.e., the resource is persistently not overused wikii43

of N=101,L=90, ands=2 (see Fig. 3 The values ofp;

winners per turn. It is observed that psncreases, the sys- turn out to be p,=0.0220 for m=1, p,=0.0592 for m

tem moves away from the frozen stg#d]. A high-p limit is

=2,p.=0.2738 for m=3, and p.=0.9988 for m=4, as

eventually reached corresponding to a state of antipersistencearked by the arrows in Fig. 3. The results capture the trend
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that p.(m) increases wittm. For m=5, our estimate shows framework of the minority game by including complications
that the system cannot achieve an antipersistent pigtate  such as a finite time horizon in evaluating the strategy per-
even ifp=1, a result again consistent with numerical resultsformance[2,34 and a confidence level for the agents to
[21]. Similarly, one may vary the resource leveht givenp  evaluate their cumulative performance in deciding whether
and Eq.(20) can be used to estimate the critical resourceo participate in each turn of the ganfi235,3§. These ad-
level L,(m) above which the system starts to deviate from angitional considerations lead to more complicated probabili-
antipersistent state. ties of occurrence of history bit strings and hence more in-
The formalism can also be applied to a non-networked,olved strategy ranking patterns. While it will be hard to
BAR game with resource levél=N/2, for which the out-  cajculate the results of these models directly, the ideas in the
come series and thus the history series also exhibit antipefresent approach can be extended to analyze numerical re-
sistence or doubly periodic featurg. While we have illus- g5 systematically by working out the strategy ranking pat-
trated the validity of the present theory by focusing onm from the outcome series. For other models in which
models for which the history bit strings are visited with equal; itation through networking does not result in a simple en-
probability as the system evolves, we stress that the idea ?g]rgement in the number of strategies that an agent holds
analyzing agent-based models through the ranking of the peEqs.(?)—(Q) need to be properly modified. '

formance of the sirategies or groups of strategies and the We have assumed uniform initial conditions in our deri-

number of agents using a strategy of a certain rank is gener.‘%}ations. There are several possible sources of nonuniformity

Ivu(iacrl:otrhrgaéﬁgor%ae?leaieri?sdtgyExmtznsdeer(ijestc;r;[(r)(\a/\(/a; Ifr?osv?/z "h the initial conditions that may affect our results. For ex-
ample, there may be nonuniform distribution of strategies

features other than antipersistence. Depending on the modg ong the agents or intrinsic nonuniformity in the possible

l;]n:k?; Counsseldgl‘rattr:(()an;stt:t(ias:ihcioirr}: ?r?: gﬁtcsggztélysg?:slflgg t?étrategies being allocated to the agents. In these cases, the
modelgto work out the probability of occurrence of each his_gtrategy ranking pattern can be found by analyzing the out-
o S e come series. Quite generally, there will be fewer agents using
tory bit string and the ranking in the strategies performancethe better performing strategy or strategies, and hence Eqs
For example, the theor_y can be modified to study each of th )—(9) needed to be modified. Another sourée of nonuniform '
many states that a high-resource-level BAR game passqgia congitions is a bias in the initial VPs. In this case, it

e s e ot 3 ) e 135 e STOUFES] hat e system o trough  tansirt
Y ’ 9p 9 behavior and relaxes to the steady state VP pattern, with

outcome series, e.g.,, 11101110 for m=1 and . : : o -
1111101111110, for me2 just off the frozen state. In these POSSIDIE persisterti.e., majoritylik behavior in the tran-
) : sient. To analyze the transient behavior, it is again important

cases, only a poriion of the whole history space is bem% follow the strategy performance ranking patterns. Using

explored by the system and the system does not show amt'ﬁe ideas that the ranking pattern of the strategies and the

persistent features. Even so, once the pattern of history timﬁumber of agents using a strategy of a certain rank for deci-

series is known, the part of the full history space that matte?‘r%ions play the crucial role in analyzing a wide class of agent-

l:saﬁlsbce)z \var:)c;\livend%nL?B%UZitr:ﬁarrasr}fLIJg%or:wftaegoc;{; heeitriﬁtfhgelegased models, the present formalism can also be extended to
) PP study different variations on the basic MG, such as the ther-

networked BAR mode]21] with high resource$32]. There mal MG [37,38 and the MG with biased strategy po&g)];

are other models, e.g., the majority game, for which theand to different versions of the networked MG in which

equations derived here specifically for the MG cannot be_ . . . .
applied directly. Typically in these models some strategie neighboring agents compare their wealth instead of strategy

have runaway VPs and hence the assumption of antipersi erformancg40,41.
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